
  information

Review

On the Integration of Knowledge Graphs into Deep
Learning Models for a More Comprehensible
AI—Three Challenges for Future Research

Giuseppe Futia * and Antonio Vetrò

Nexa Center for Internet and Society, Department of Control and Computer Engineering (DAUIN),
Politecnico di Torino, 10129 Turin, Italy; antonio.vetro@polito.it
* Correspondence: giuseppe.futia@polito.it; Tel.: +39-0110907216

Received: 24 December 2019; Accepted: 18 February 2020; Published: 22 February 2020 ����������
�������

Abstract: Deep learning models contributed to reaching unprecedented results in prediction and
classification tasks of Artificial Intelligence (AI) systems. However, alongside this notable progress,
they do not provide human-understandable insights on how a specific result was achieved. In contexts
where the impact of AI on human life is relevant (e.g., recruitment tools, medical diagnoses, etc.),
explainability is not only a desirable property, but it is -or, in some cases, it will be soon-a legal
requirement. Most of the available approaches to implement eXplainable Artificial Intelligence (XAI)
focus on technical solutions usable only by experts able to manipulate the recursive mathematical
functions in deep learning algorithms. A complementary approach is represented by symbolic AI,
where symbols are elements of a lingua franca between humans and deep learning. In this context,
Knowledge Graphs (KGs) and their underlying semantic technologies are the modern implementation
of symbolic AI—while being less flexible and robust to noise compared to deep learning models,
KGs are natively developed to be explainable. In this paper, we review the main XAI approaches
existing in the literature, underlying their strengths and limitations, and we propose neural-symbolic
integration as a cornerstone to design an AI which is closer to non-insiders comprehension. Within
such a general direction, we identify three specific challenges for future research—knowledge matching,
cross-disciplinary explanations and interactive explanations.
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1. Introduction

Deep Learning techniques are dominant in the modern approach to Artificial Intelligence (AI).
Their use is widespread, due to their very high performance in prediction and classification tasks
across application areas [1–3]. However, alongside their large adoption, current deep learning models
are opaque and do not provide human-understandable insights on their outputs. Explainability is
a crucial requirement [4] if deep learning is used for tasks that heavily impact the lives of people,
such as recruitment tools [5], decision support systems for justice [6], prevention of terrorism [7],
clinical applications [8], just to mention a few sensitive domains.

EXplainable Artificial Intelligence (XAI) is the field of research where mathematicians, computer
scientists and software engineers design, develop and test techniques for making AI systems more
transparent and comprehensible by its stakeholders. Most of the approaches developed in this field
require very specific technical expertise to manipulate the recursive algorithms that implement the
mathematical functions at the roots of deep learning. Moreover, understanding this mathematical
scaffolding is not enough to get insights into internal working models. In fact, in order to be more
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understandable, deep-learning-based systems should be able to emit and manipulate symbols, enabling
user explanations on how a specific result is achieved [4].

In the context of symbolic systems, Knowledge Graphs (KGs) [9] and their underlying semantic
technologies are a promising solution for the issue of understandability [10]. In fact, these large
networks of semantic entities and relationships provide a useful backbone for several reasoning
mechanisms, ranging from consistency checking [11], to causal inference [12]. These reasoning
procedures are enabled by ontologies [13], which provide a formal representation of semantic entities
and relationships relevant to a specific sphere of knowledge.

We consider the implementations of symbolic systems based on semantic technologies suitable
to improve explanations for non-insiders. Input features, hidden layers and computational units,
and predicted output of deep learning models can be mapped into entities of KGs or concepts and
relationships of ontologies (knowledge matching). Traditionally, these ontology artifacts are the results of
conceptualizations and practices adopted by experts from various disciplines, such as biology [14],
finance [15], and law [16]. As a consequence, they are very comprehensible to people with expertise
in a specific domain (cross-disciplinary explanations), even if they do not have skills in AI technologies.
Moreover, in the context of semantic technologies, KGs and ontologies are natively built to be queried
and therefore they are able to provide answers to user requests (interactive explanations) and to provide
a symbolic level to interpret the behaviour and the results of a deep learning model.

We represent a schematic graph that summarises the role of semantic technologies for XAI in
Figure 1. In particular, knowledge matching of deep learning components, including input features,
hidden unit and layers, and output predictions with KGs and ontology components can make the
internal functioning of algorithms more transparent and comprehensible; in addition, query and
reasoning mechanisms of KGs and ontologies enable the conditions for advanced explanations,
namely cross-disciplinary and interactive explanations.

Figure 1. Schematic representation of an explainable artificial intelligence (AI) system that integrates
semantic technologies into deep learning models. The traditional pipeline of an AI system is depicted
with the blue color. The Knowledge Matching process of deep learning components with Knowledge
Graphs (KGs) and ontologies is depicted with orange color. Cross-Disciplinary and Interactive
Explanations enabled by query and reasoning mechanisms are depicted with the red color.
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In this position paper our goal is to review the main XAI approaches existing in the literature,
underlying their strengths and limitations, and propose neural-symbolic integration as a cornerstone
to design an AI which is closer to non-insiders comprehension. In Section 2 we provide a background
context in terms of learning approach between deep learning systems (connectionist AI), and reasoning
systems built on top of ontologies and KGs (symbolic AI). Then, in Section 3 we outline the technical
issues related to XAI, describing current solutions that require expertise on deep learning techniques.
In Section 4 we provide details on three promising research challenges (knowledge matching,
cross-disciplinary explanations, and interactive explanations) enabled by the integration of KGs
and ontologies into deep learning models. We conclude with Section 5, where we synthesize our
contribution and future research we identify for eXplainable AI.

2. Background: Learning Approach in Connectionist and Symbolic AI

In this Section we describe the main learning principles behind deep learning models
(connectionist AI) and KGs and ontologies (symbolic AI). Understanding their differences is a crucial
requirement to realize how symbolic systems can be integrated within connectionist approaches to
build a more comprehensible AI.

The movement of connectionism, also known as parallel distributed processing, correspond to
“the second wave” (the first wave dates back to the 1940s and it was based on a neural perspective
of AI [17]) of research in neural networks. Born in the 1980s, the central idea of connectionists is
that a network of simple computational units, defined as neurons, excite and inhibit each other in
parallel to achieve an intelligent behavior. As underlined by Rumelhart et al. [18], the resulting
knowledge consists of the connections between these computational units distributed throughout
the network. Two key concepts of the connectionism have been borrowed by modern deep learning
techniques. The first concept is represented by the distributed representation [19]. According to this
principle: (i) each input of a system has to be represented by multiple features; (ii) each of these
multiple features needs to be adopted in the representation of many possible inputs. The second
concept consists in the adoption of the back-propagation algorithm to train deep neural networks [20].
The goal of the back-propagation is to efficiently compute the gradient of the loss function with respect
to the weights, or parameters, of a neural network. Through this gradient computation, it is possible
to update the network weights to minimize the loss value. As a consequence, the learning process
can be reduced to an optimization problem, finding a function that produce the minimal loss. Such
methodological advances, in combination with the increasing of computational resources and the
availability of large datasets, make the modern deep learning techniques very powerful in being
trained without supervision, extracting patterns and regularities from the input data. Making this
acquisition process explainable and transparent is still an open research issue in the connectionist
community, which is now trying to fill the gap between black-box systems [21] to more understandable
systems. Nevertheless, as recognized by some authors (e.g., Lecue [22]), this community is far from
creating tools that in terms of explainability adapt to different domains and applications.

Beside the connectionist approach, the movement of symbolic AI, also known as GOFAI
(Good Old-Fashioned Artificial Intelligence) [23], adopts an opposed paradigm: the knowledge about
the world is not acquired deriving a mathematical model through optimization techniques, but it
is hard-coded in the system exploiting formal languages. Therefore, the system is able to reason
on the statements expressed in these formal languages through logical inference rules. The modern
implementation of symbolic systems is represented by ontologies, formal representation of domain
conceptualizations, and Knowledge Graphs (KGs), large networks of entities and relationships relevant
to a specific domain, where each node of the graph is an entity and each edge is a semantic relationship
connecting two different entities. KGs are explicitly designed to capture the knowledge within domains,
integrating and linking data from different phenomena, or different types of representation [24].
The reasoning over these artifacts, as reported by Hoehndorf et al. [25], enables (i) consistency checking
(i.e., recognizing contradictions between different facts), (ii) classification (i.e., defining taxonomies),
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(iii) deductive inference (i.e., revealing implicit knowledge given a set of facts). Considering their features,
symbolic methods are not robust to noise and can not be applied to non-symbolic context where the
data is ambiguous. Nevertheless, they offer a data-efficient process by which models can be trained
to reason on symbolic contexts and are able to provide background knowledge for deep learning
models [25]. Lecue [22] stresses the opportunity of the usage of KGs to encode the semantic of input
and output data, considering also their specific properties. Moreover, KGs could play a central role
in designing novel deep learning architectures that incorporate causation [12], supporting also other
tasks, from data integration and discovery to semantic fragmentation and composition [22]. All these
features represent an essential condition to create, as defined by Doran [4], a system that is able to emit
comprehensible symbols apart from its output. This condition enables the opportunity for the user
to interact with the system, exploiting her tacit form of reasoning and knowledge [4] that relies on
shared symbols.

3. Explanations for AI Experts: Technical Issues and Solutions

The goal of an explainable system is to expose intelligible explanations in a human-comprehensible
way, and keeping the human in the loop is a determinant aspect. Nevertheless, as clearly demonstrated
in the literature survey conducted by Adadi et al. [26], the human factor impact is not adequately
considered XAI. Concordantly, Miller et al. [27] argue that most of the existing methods focus on the
perspective of technicians rather than the viewpoint of the intended users.

This condition creates a gap of expectations of the layman in terms of explainable systems,
because the term “explanation” has been re-purposed by the connectionist community to address
specific technical issues. Instead, other disciplines collectively considered as “explanation sciences” [28],
from cognitive science to philosophy, are rarely included in the current XAI research.

In the following subsections we discuss the technical issues related to eXplainable AI, and we
provide a brief overview of the typical approaches adopted by AI experts for the explanation task.

3.1. Technical Issues in a Connectionist Perspective

We synthesize the technical issue related to the explainability as follows: (i) complexity;
(ii) multiplicity; (iii) opacity degree.

Complexity: deep learning techniques are difficult to examine, because of their structure and
the way they are working. As reported by Adadi [26], since deep learning algorithms are based on
high-degree interactions between input features, the disaggregation of such functions in a human
understandable form and with human meaning is inevitably more difficult.

Multiplicity: considering the complex network architecture of deep learning techniques, these
techniques might produce multiple accurate models from the same training data. Hall and Gill [29]
define this issue as “multiplicity of good models”. In fact, the internal paths through the network are
very similar, but not the same, and consequently the related explanations can change across different
models. This issue clearly emerges in case of knowledge extraction techniques [30,31]. The explanation in
this case consists in the knowledge acquired and encoded as the internal representation of the network
during the training.

Opacity Degree: a well-known problem in the AI research field is the trade off between
interpretability and accuracy. As underlined by Breiman [32], achieving high accuracy often requires
more complex prediction methods, and vice versa simple and interpretable functions do not provide
accurate predictors. Considering this issue, the traditional approach is to construct complex models
to reach a high accuracy and then adopt reverse engineering techniques to extract explanations, thus
without the necessity of knowing in details the inner works of the original model [26].
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3.2. Explainable Systems for AI Experts

Considering the technical issues mentioned in the previous subsection, we identify two main
explanation methods from literature, that is, transparency and post-hoc [28], that can support
explanations to the AI expert in sensitive conditions.

Transparency Explanations: these types of methods are focused on how a model work internally
and, as underlined by Lepri et al. [33], the explanation can be rendered at three different levels: (i) the
entire model, (ii) the individual components (e.g., parameters) of the model, (iii) the specific training
algorithm. For each level, Mittelstadt et al. [28] recognize respectively the following notions in terms
of explanation:

1. Simulatability: checking through a heuristic approach whether a human reaches the mechanistic
understanding of how the model functions, and consequently if he is able to simulate the decision
process. In this context, within a user study [34] that involved thousand participants, Friedler et al.
measured human performance in operations that mimic the definition of simulatability, using as
evaluation metric the runtime operation count.

2. Decomposability: in this case each component of the model, including a single input, parameter,
and computation has to be clearly interpretable. In a recent work, Assaf et al. [35] introduce
a Convolutional Neural Network (CNN) to predict multivariate time series, in the domain of
renewable energy. The goal is to produce saliency maps [36] to provide two different types of
explanation on the predictions: (i) which features are the most important in a specific interval
of time; (ii) in which time intervals the joint contribution of the features has the greatest impact.

3. Algorithmic transparency: for techniques such as linear models there is a margin of confidence
that the training will converge to a unique solution, so the model might behave in an online
setting in an expected way. At the opposite, deep learning models cannot provide guarantees that
they will work in the same way on new problems. Datta et al. [37] designed a set of Quantitative
Input Influence (QII) for capturing the joint influence of the inputs on the outputs of an AI system,
with the goal to produce transparency reports.

Post-hoc Explanations: these methods do not seek to reveal how a model works, but they
are focused on how it behaved and why. Lipton [38] detects different post-hoc approaches that
include natural language explanations, interactive visualizations, local explanations, and case-based
explanations. Natural language explanations are based on qualitative artifacts that describe the
relationships between the features of the input data and the outputs (e.g., predictions or classifications)
of the model [39]. Interactive visualizations show relative influence of features or provide graphical
user interfaces to explore visual explanations [40]. Local explanations intend to identify the behavior
of a deep learning model on a particular prediction in two different ways—a simple and local
fitting around a particular decision [39], and variables perturbations to understand the changes
in the prediction [41]. Case-based explanations consist in the exploitation of the trained model to
identify which samples of the training data are the most similar to the prediction or the decision to be
explained [42].

Despite this variety of approaches to address technical issues related to the explainability, these
methodologies are not intended to capture the full behavior of the system, but rather to provide
approximations of the system behavior. As stressed by Mittelstadt et al. [28], these approximations can
be offered to AI experts both for “pedagogical purposes” and to provide reliable predictions on the
system behavior over a restricted domain. Nevertheless, technical approximations are not enough and
can be misleading when presented as an explanation to the non-insiders on how the model works.

4. Explanations for Non-Insiders: Three Research Challenges with Symbolic Systems

In his prominent work, Miller [27] defines explanations as social conversation and interaction
for transfer knowledge. A fruitful exchange implies that who explains must be able to recognize the
mental model of who receives the information. To enable this process, a representation of the world
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through symbols is a crucial requirement. Furthermore, Miller articulates that this social exchange
can be enabled in the XAI only if human sciences, such as philosophy, psychology, and cognitive
sciences are injected within the development of new XAI approaches. The final aim is in fact is
to produce explanations that allow “affected parties, regulators and more broadly non-insiders
to understand, discuss, and potentially contest decisions provided by black-box models” [26].
Considering these requirements, we believe that symbolic systems open opportunities in three
different human-centric challenges: (i) knowledge matching, (ii) cross-disciplinary explanations and
(iii) interactive explanations.

The identification of these three challenges is based on our analysis, synthesis and elaboration
of the most recent advances in the field of incorporating KGs features into deep learning model.
We revised such corpus of evidence in accordance with the aim of building AI systems able to provide
comprehensible explanations for non-insiders, through manipulation of symbols. Herein we select,
for each challenge, recent research works that in our opinion represent the most promising references.
Therefore, we suggest that further work along these tracks should be encouraged and supported.

Knowledge Matching: Seeliger et al. [10] identify the matching of input features or internal
neurons of deep learning models to classes of an ontology or entities of a KG as an important challenge
to be addressed by the research community of XAI. Interesting works in this sense have been proposed
by Sarker et al. [43], in which objects within images are mapped to the classes of the Suggested
Upper Match Ontology. On the basis of the classification output of the neural network, a description
logic (DL) learner is adopted to create class expressions that work as explanations. In a recent work,
Angelov et al. [44] introduce a novel deep learning architecture for image classification, that includes
an hidden semantic layer, called "Prototype layer", to provide a clear explanation of the model.
This intermediate semantic layer receives training data samples, defined as prototypes, that are
characterized by local peaks in the data distribution. Each prototype is then exploited to generate
logical rules to provide natural language explanations. From a different perspective, Selvaraju et al.
propose a method to learn a map between neurons weight to semantic domain knowledge [45]. In a
work more focused on unsupervised learning, Batet et al. [46] exploit WordNet [47] and its taxonomic
knowledge to compute semantic similarities that conduct to more interpretable clusters. In the context
of transfer learning, Geng et al. [48] exploit two external KGs in a deep learning architecture for the
following purposes: (i) provide explanations to understand the transferability of features learned
by a CNN between different domains; (ii) justify new classes predicted by a Graph Convolutional
Network (GCN), that were unseen by the CNN.

Cross-disciplinary Explanations: ontologies and KGs are able to represent domains by
means of symbols, whose manipulation produces transparent inferences of new information.
Both implementations are able to outline different areas of human knowledge according to
characteristics and expertise of the related users. Moreover, it is worth mentioning that the concept
of ontology is adopted by information science and philosophy. The stretch in common within
the two different disciplines is the attempt to define ideas and entities within a precise system of
categories, that explicit interdependent properties and relationships. Therefore, applied ontologies can
be considered a technical application to prior work in philosophy. In a work entitled “The Knowledge
Graph as the Default Data Model for Machine Learning”, Wilcke et al. [49] describe how decades of
work have been devoted to the development of vast and distributed KGs to represent various domains
of knowledge. Potentially, the usage of this form of interlinked and structured data enables the training
of deep learning models from different domains and from the perspective of different disciplines.
In this context, Sopchoke et al. [50] developed a method for explainable rules in recommendation
systems related to different domains, using relational learning techniques on semantic statements.

Interactive Explanations: in a human-centered vision of explainable tools, AI systems should
be able to offer user interaction features rather than static explanations. Wang et al. [51] developed
a neural network that extracts image contents as KG facts that are interlinked with the DBpedia
repository [52], and questions provided by the user are translated in SPARQL (SPARQL Protocol and
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RDF Query Language) queries that are run over this enriched knowledge base. Liao et al. [53] propose a
recommendation system that enable user-feedback on human-interpretable domain concepts. More in
general, in recommendation systems the ontology is able to provide information that is implicit in the
data used to perform inference and consequently to create rules which limit the number of plausible
recommendations. For future developments, Sarker et al. [43] envision their explanation tool for image
classification to be used in an interactive system where a human can monitor and fix algorithmic
decisions based on the given explanations.

5. Conclusions and Future Work

Explainability of the outputs of AI systems is an essential requirement in domains where their
impact on human life is relevant. Nevertheless, the leading implementation of modern AI based
on deep learning model is barely intelligible to the layman, as well as the main technical solutions
proposed in the field of explainable AI are usable only by experts of the field. A promising alternative
to most beaten routes for explainable AI is represented by Knowledge Graphs, because they are
natively developed to support explanations intelligible to humans. In this work we analyzed the
differences in terms of learning approaches between deep learning techniques, belonging to the
connectionist movement, and KGs and ontologies, expression of current symbolic systems. On the
basis of this analysis, we provided an overview of the main issues and approaches to address
XAI in the connectionist communities, which are primarily aimed at AI experts. We state that
for creating a human-centered AI able to emit and manipulate symbols that are comprehensible
also for non-insiders, symbolic systems has to be integrated in the dominant approaches of AI,
because they can contribute in terms of (i) knowledge matching, (ii) cross-disciplinary explanations and
(iii) interactive explanations. In particular, the knowledge matching of deep learning components,
including input features, hidden unit and layers, and output predictions with KGs and ontology
components can make the internal functioning of algorithms more understandable. Moreover, query
and reasoning mechanisms of KGs and ontologies enable the conditions for cross-disciplinary and
interactive explanations. For each of the three tracks, we provided references to the most recent
and prominent -in our opinion- research works. We suggest that further work along these tracks
should be encouraged and supported to make explanations of AI systems outputs more inclusive
and effective. Starting from these points we identify specific trajectories for future work on XAI,
including the exploitation of symbolic techniques to design novel deep neural architectures to natively
encode explanations; the development of multi-modal explanation models that are able to provide
insights from different perspectives, combining visual and textual artifacts; the definition of a common
explanation framework for the deep learning model comparison, based on KGs and ontologies,
to enable proper validation strategies.
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