DECODE

DEcentralized Citizen Owned Data Ecosystem

Or. Denis “Jaromil” Roio
Dyne.org CT0 & co-founder

Dipital Commons & the Future of Cities

NEXA 10™ Conference
Polito, Future Urban Legacy Lab
18 December 2018

@ et

adyne.or

Hacker community since 1994 — GNU/Llnux/BSD
Internet based not-for-profit software foundry
Sustainable tech / Interdisciplinarity / Art & Science
Design with minimalism: UNIX principles
Community engagement

and empowerment
’_. o/

decode

Sharing Economies... ?!
but with whom

are we really sharing
our needs and desires?

"IIIII

[|
Internet of Things.. communicating

d eCco d e on our behalf.. but who are they
——— speaking with and about what?

. N . N EEEE .
. ——
‘ L]
-
s
* e

Distributed Ledger Technology (Blockchain)

decode

.—_
Virtual

GNU+Linux Operating System

d eCco d @ or distributed logical computing,

mmessmsm CONtrolled execution environment.
I

Minimalist, resource optimised, fully documented, customisable and available
to run on cloud, bare metal and more than 30 ARM devices (open hardware!)

...based on;

ZLVUAN

Smart-rules language:

., Zenroom Virtual Machine (YM) decode
- Zencode Domain Specific Lanquage (DSL) __

> Controlled execution and DSL for Elliptic Curve cryptography

> Extremely portable component for end-to-end encryption
> Language theoretic security designh co-evolving with pilots

> Facilitates interdisciplinary code reviews

Given that | am known as 'Bob'
When | create my new keypair

Then print keypair 'Bob'’

send public key
public: zenroom.ECP }

Given that | am known as 'Alice'
and | have my keypair

and | have a 'Bob' 'public' key
When | import 'Bob' keypair into my keyring
Then print my keyring

save keypair into keyring
{ Bob: { public: zenroom.ECP,
private: zenroom.octet },
Alice: { public: zenroom.ECP } }

Given that | am known as 'Alice’
and | have my keypair
and | have the 'public' key 'Bob' in keyring

When | draft the text 'Hi Bob!"
and | use 'Bob' key to encrypt the text into 'ciphertext'
Then print data 'ciphertext'

decode
e —

Given that | am known as 'Alice’
and | have my keypair
and | have the 'public' key 'Bob' in keyring

When | draft the text 'Hi Bob!"
and | use 'Bob' key to encrypt the text into ‘ciphertext
Then print data 'ciphertext’

send a secret message
{ schema: 'AES-GCM',
curve: 'bls383'
text: zenroom.octet
pubkey: zenroom.ECP
checksum: zenroom.octet
iv: zenroom.random
zenroom: '0.9'
encoding: 'hex' }

Given that | am known as 'Bob'
and | have my keypair

When | decrypt the ‘ciphertext' to 'decoded’
Then print data 'decoded’

Reply the secret message
{ decoded = { from: 'Alice’,
text: 'Hi Bob! } }

Given that | am known as 'Bob'
and | have my keypair

and | have the 'public’ key 'Alice' in keyring
When | draft the text 'Hi Alice, lets talk!

and |l use 'Alice' key to encrypt the text into 'ciphertext’

Then print data 'ciphertext’

Elliptic Curve Qu-Vanstone Implicit Certificate

U CA

ker[l,...,n—1]
P .= Ry + kG
Certy = Encode(Py, U, %)
e:= Hy,(Certy)
r:=ek+dca (mod n)
r, Certy
e:= H,(Certy)
dy = eky +r (mod n)
Qu :=ePy+Qca

random = R
order = EC
G = ECP.ge
- make a
ku = INT.n
Ru=0G6%*Kk
keypair
dCA = INT.
QCA=6G*
-- from he
k = INT.ne
k6 =G * k
-- public
Pu = Ru +
declaratio

declhash =

hash = INT.

-- private
r = (hash
-- verifie
du = (r +
Qu = Pu *
assert(Qu

NG.new()

P.order()

nerator()

request for certification
ew(random, order)

u

for CA

new(random, order) -- private

dCA —- public (known to Alice)
re the CA has received the request
w(random, order)

key reconstruction data
kG
n = { public = Pu:octet(),
requester = str("Alice"),
statement = str("I am stuck in Wonderland.") }
sha256 (0CTET.serialize(declaration))
new(declhash, order)
key reconstruction data
* k + dCA) % order
d by the requester, receiving r,Certu
hash * ku) % order
hash + QCA
== G * du)

Example of ECQV

“implicit certificate”

implementation in
Zenroom.dyne.org

decode

Scenario 'request"
Make my declaration and request certificate
Given that | introduce myself as 'Alice'
and | have the 'public' key 'MadHatter' in keyring

When | declare to 'MadHatter' that | am 'lost in Wonderland'
and | issue my implicit certificate request 'declaration’
Then print all data

Declare and request certificate
{ declaration_keypair:

{ private: zenroom.octet
public: zenroom.ECP }
declaration_public:

{ statement: 'lost in Wonderland'
from: 'Alice'
public: zenroom.ECP
to: 'MadHatter' } }

Scenario 'issue’:
Receive a declaration request and issue a certificate
Given that | am known as 'MadHatter"
and | have a 'declaration_public' '‘from' 'Alice'

and | have my 'private’' key in keyring
When | issue an implicit certificate for 'declaration_public'
Then print all data

Issue a certificate
{ declaration:
{ hash: zenroom.octet
certificate: zenroom.ECP } }

Issue a certificate
{ declaration:
{ hash: zenroom.octet
certificate: zenroom.ECP } }

Scenario 'challenge:
Receive a certificate and use it to encrypt a message
Given that | am known as 'Bob'
and | have my 'private' key in keyring
and that 'Alice' declares to be 'lost in Wonderland'
and | have a 'certificate' 'from' 'MadHatter'
When | use the 'certificate' to encrypt 'Hi Alice!'

Then | print all data

Encrypt a message
using the certificate keypair.

Bob and Alice communicate privately,
Alice's correct answers are a proof of certification

decode
g —

Look at the future with our expert team

dyne.org s

Consultancy

Jeuelopment

Available for workshops, focused meetings and development projects

e-mail: info @ dyne.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

