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Abstract
Nowadays automated decision-making systems are pervasively used and more often, they are used for taking important
decisions in sensitive areas such as the granting of a bank overdraft, the susceptibility of an individual to a virus infection,
or even the likelihood of repeating a crime. The widespread use of these systems raises a growing ethical concern about
the risk of a potential discriminatory impact. In particular, machine-learning systems trained on unbalanced data could rise
to systematic discriminations in the real world. One of the most important challenges is to determine metrics capable of
detecting when an unbalanced training dataset may lead to discriminatory behaviour of the model built on it. In this paper,
we propose an approach based on the notion of data completeness using two different metrics: one based on the combinations
of the values of the dataset, which will be our benchmark, and the second using frame theory, widely used among others for
quality measures of control systems. It is important to remark that the use of metrics cannot be a substitute for a broader
design that must take into account the columns that could lead to the presence of bias in the data. The line of research does
not end with these activities but aims to continue the path towards a standardised register of measures.
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1. Introduction
Recently, machine learning has become more and more
popular in different sectors [1][2][3][4][5], thanks to both
the possibility of having large amounts of data avail-
able [6][7] and the possibility of increasingly efficient
implementations [8][9][10][11].

The world around us is gradually being enriched with
functionalities that seem “normal” to us, but which are
actually the result of sophisticated learning algorithms
belonging to the field of AI [12]. This may seem rational
and neutral, but sometimes, it can lead to harmful situa-
tions such as discrimination [13] or to worse predictions
than what could be achieved with balanced data [14]. Eq-
uity and discrimination risks arise mainly due to dispro-
portionate data sets: learning algorithms build the model
from training data, so such a disproportion can lead to
conclusions that are out of line with reality [15][16][17].
On the other hand, in some situations it is difficult to
have homogeneous and proportional data because if the
population is unbalanced, the sample used for learning
will also be unbalanced too. In literature there are dif-
ferent techniques that allow to fill the dataset with miss-
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ing data [14][18][19]. The idea of the present study is
to verify the balance of the data even before the onset
of discriminatory problems by the prediction algorithm
through an index that measures the degree of balance of
the data. At the same time the proposed metric can be
considered within the framework of the measures of the
ISO 25000 series of standards [20][21]. In the following,
reference will be made to the data quality “characteris-
tics” (e.g. completeness, accuracy) defined in the ISO/IEC
25024 standard [22]. This article will also use the termi-
nology of relational algebra: the term column identifies
the field or attribute of the dataset (intensional level),
while the term tuple or row identifies an instance of the
dataset (extensional level).

2. The proposed methodology
Let us consider a dataset containing distinct instances of
an entity, in one-to-many relation with other entities. The
classic example is the entity Person that can belong to dif-
ferent categories or classes describing gender, ethnicity,
income bracket and religion (Fig. 1).

A simple, but sometimes inefficient, way of realis-
ing this concept is through the introduction of as many
columns as there are concepts linked by the set rela-
tion since it is a one-to-many relation. In a relational
database, these relationships are realised through foreign
keys or columns with discrete domain controlled through
row constraints. For the problem at hand, some of these
columns are special, i.e. they may contain an identifier
(primary key), a protected attribute (e.g., gender or reli-
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Figure 1: The Entity-Relationship diagram representing the
person’s membership of several categories

gion, or any other personal characteristic that should not
be object of discrimination [23]), a target variable (usu-
ally denoted by Y) and an output of a prediction (usually
denoted by R) if it has already been computed. However,
the approach proposed is agnostic with respect to this
classification because for our purposes we are interested
in evaluating those columns that assume values in finite
and discrete intervals, which we will call categorical with
respect to the row data. This characteristic will allow
us to consider the set of their values as the digits con-
stituting a number in a variable base numbering system.
The idea of the present study is based on the principle
that a learning system provides predictions consistent
with the data with which it has been trained. Therefore,
if it is fed with non-homogeneous data it will provide
unbalanced and discriminatory predictions with respect
to reality. For this reason, the methodology we propose
starts with the analysis phase of the reality of interest
and of the dataset, an activity that must be carried out
even before starting the pre-training phase in line with
previous studies where bias measures in automated deci-
sion making systems were proposed [24][25][26][22]. In
particular, during this phase, it is necessary to identify
all the independent columns that define whether the in-
stance belongs to a class or category. Suppose we have a
structured dataset as follows:

𝐷𝑆 = {𝐶0, 𝐶1, ..., 𝐶𝑛−1} (1)

Indicating with the set S the positions of the columns
categorising the instances, functionally independent of
the other columns in the dataset:

𝑆 ⊆ {0, 1, ..., 𝑛− 1}, 𝑑𝑖𝑚(𝑆) = 𝑚,𝑚 ≤ 𝑛 (2)

we can analyze the new dataset consisting of the columns
𝐶𝑆(𝑗) with 𝑗 ∈ [0,𝑚− 1]. Having said that, we can de-
cide to use two different notions of completeness: maxi-
mum or minimum. In the first case the presence in the
dataset of a greater number of distinct instances that

belong to the same categorising classes constitutes a con-
straint for all the other instances of the dataset. That is,
one must ensure that one has the same number of repli-
cas of distinct class combinations for distinct instances.
Instead, in the second case it is sufficient to have at least
one combination of distinct classes among those possi-
ble for each instance. For simplicity, but without loss
of generality of the procedure, we will explore the mini-
mum completeness of the dataset, then we will reduce the
dataset to just the columns 𝐶𝑆(𝑗) by removing duplicate
rows. We will use the Python language to explicate the
calculation formulas and make the mathematical logic
implied less abstract. The Python language has the pan-
das library, which makes it possible to carry out analysis
and data manipulation in a fast, powerful, flexible and
easy-to-use manner. Through the DataFrame class it is
possible to load data frames from a simple csv file:

import pandas as pd
d f =pd . r e a d _ c s v ( < f i l e n a m e > ,

d e l i m i t e r = " ; " )

We will use two different metrics to measure the degree
of completeness: one is based on combinatorial calculus
and the other on frame theory.

2.1. Combinatorial metric
The ideal value of minimum completeness for the com-
binatorial metric is when in the dataset there is at least
one instance that belongs to each distinct combination of
categories. The absence of some combination could cre-
ate the lack of information that we do not want to exist.
To calculate the total number of distinct combinations
we need to calculate the product of the distinct replicas
per single category (𝐶𝑆(𝑗)).

k= len ( d f [ ' CS0 ' ] . unique ( ) ∗
len ( d f [ ' CS1 ' ] . unique ( ) ∗ . . . ∗
len ( d f [ 'CSm−1 ' ] . unique ( )

On the other hand, in the dataset we only have the chara-
cterising columns so we can derive the true number of
distinct instances in order to determine how far the data
in our possession deviates from the ideal case.

len ( d f . d r o p _ d u p l i c a t e s ( ) ) /
( len ( d f [ ' CS0 ' ] . unique ( ) ∗
len ( d f [ ' CS1 ' ] . unique ( ) ∗ . . . ∗
len ( d f [ 'CSm−1 ' ] . unique ( ) )

The value for maximum completeness is calculated from
the maximum number of duplicates of the same combi-
nations of characterising columns. For this reason it is
necessary to maintain in the dataset in addition to the
columns 𝐶𝑆(𝑗) a discriminating identification field of the
rows with the same values in these columns. To deter-
mine the potential total, once the maximum number of
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duplications (M) has been determined, it is necessary to
extend this multiplication factor to all other classes.

M= d f . groupby ( [ ' CS0 ' , . . . , 'CSm−1 ' ] ) .
s i z e ( ) . r e s e t _ i n d e x ( name= ' c o u n t s ' ) .
c o u n t s .max ( )

len ( d f ) / (M∗ k )

2.2. Metric based on frame theory
What we have been described till now is just a combinato-
rial calculations exercise, however we would like to have
a more sophisticated calculation model. For this reason,
we have found in Frame theory, which finds its natural
application in the field of signals and control systems
theory, a promising calculation system [27][28]. In a 𝐻𝑚

finite-dimensional Hilbert space, of 𝑚 dimension and
with an inner product ⟨·, ·⟩𝐻𝑚 , a frame of 𝐻𝑚 is defined
as a finite collection of vectors (𝑣𝑖)𝑖∈𝐼 ⊂ 𝐻𝑚 if there
exist two constants 𝜃 and Θ, with 0 < 𝜃 ⩽ Θ, such that:

𝜃‖𝑣‖𝐻𝑚
⩽
∑︁
𝑖∈𝐼

|⟨𝑣𝑖, 𝑣⟩𝐻𝑚 |2 ⩽ Θ‖𝑣‖𝐻𝑚
(3)

A frame is said to be tight if 𝜃 = Θ. So we can say that, a
frame is tight when its vectors are as spread out in space
as possible. A notable result that we will exploit in the
following is that whenever a sequence (𝑣𝑖)𝑖∈𝐼 ⊂ 𝐻𝑚

of vectors constitute a frame, the constants 𝜃 and Θ are
the smallest and the largest eigenvalues respectively of
the corresponding frame operator. Because the frame
operator is self adjoint, a frame is tight if and only if its
frame operator is an appropriate multiple of the identity
operator. If we consider now as row vectors the com-
ponent tuples of the original dataset, reduced to the 𝑚
columns 𝐶𝑆(𝑗), we represent the new dataset with the
matrix 𝑉 (𝑘 ×𝑚):

𝑉 =

⎡⎢⎢⎢⎣
𝑣1
𝑣2
...
𝑣𝑘

⎤⎥⎥⎥⎦ (4)

Before calculating the Gramnian matrix, the values must
be centred with respect to the mean row, in the following
way:

𝑊 = 𝑉 −

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ · 1
𝑘

𝑘∑︁
𝑖=1

𝑣𝑖 (5)

The Gramian matrix is obtained by performing the matrix
product:

𝐺 = 𝑊𝑇 ·𝑊 (6)

At this point, we can calculate the eigenvalues, which
represent for each column a measure of variance of the
values within that column.

Λ = (𝜆1, ..., 𝜆𝑚) (7)

With reference to the different categories of frames [29],
we recall that for some of them it is possible to expect
results on the values and multiplicity of the eigenval-
ues [30][31]. In the following we derive considerations
about the tightness of the frame by analysing the distribu-
tion of the eigenvalues. The ideal case is when the frame
is tight and the eigenvectors are uniformly distributed
with respect to the vector space. In this case all the eigen-
values assume the same value, and an easy way to check
this is when the difference between the maximum and
minimum eigenvalues is zero:

∆ = 𝑚𝑎𝑥(Λ)−𝑚𝑖𝑛(Λ) = 0 (8)

However, this index cannot be adopted since it does not
have a predefined range of value and it would not allow
comparisons between datasets. In this regard several mea-
sures of homogeneity and balance of a distribution have
been proposed in literature (e.g., Shannon, Gini-Simpson,
Theil, etc.). In particular we will use the Gini-Simpson
index for categorical data which we will normalise to
obtain values in the range [0, 1]:

𝑓𝑖 =
𝜆𝑖

𝑚∑︀
𝑖=1

𝜆𝑖

(9)

𝐺𝑖𝑛𝑖𝑖𝑛𝑑𝑒𝑥 =
𝑚

𝑚− 1
·

(︃
1−

𝑚∑︁
𝑖=1

𝑓𝑖
2

)︃
(10)

What we have seen till now is not directly applica-
ble to any dataset because the columns representing the
categories may not be defined on a numerical domain.
For example, the category sex is usually defined on the
domain char or on the presence of null values inside
columns. Moreover, since the method is based on the
position of the eigenvectors in the vector space, it is sen-
sitive with respect to their Euclidean distance. Distance
depending on dataset values. Therefore, in order to ap-
ply the methodology correctly, the following algorithm
should be followed:

1. analyse the reality of interest and the dataset by
selecting the columns that classify the rows and
that are independent of each other (𝐶𝑆(𝑗));

2. mapping the domain of column values that clas-
sify the rows into an ordinal set of natural num-
bers N by means of a transformation function
that matches each value in the domain (numeric,
alphanumeric or null) to a natural progressive
number while preserving the ordering of the val-
ues;
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3. construct the matrix 𝑊 from 𝑉 by subtracting
the mean vector;

4. calculate the matrix 𝐺 and its eigenvalues;
5. calculate the heterogeneity index of the eigenval-

ues;
6. analyse the results obtained and return to the ini-

tial point if any error situations arise (dependency
between columns, incorrect mapping,...).

The Fig. 2 shows the two different algorithms needed to
calculate the metrics described in this article.

Figure 2: The two algorithms compared in terms of the steps
to follow

3. Case Study

3.1. Designing
Due to the high sensitivity of the frame-based method to
domain values, we preferred to test its effectiveness using
a dataset with synthetic data. This allowed us to start
from an ideal model. Knowing in advance the presence
of bias in the dataset will allow us to verify the goodness
of performance of the two metrics, without having the
influence of any side effects. We will use a dataset with
𝑚 categorising columns and assume that we have the
same number of values in the categories that is to say
𝑋𝐵 . Computing all 𝑋𝐵

𝑚 possible arrangements with
repetitions is a simple task [32]. In fact, it is sufficient to
compose all the numbers ranging from 0 to 𝑋𝐵

𝑚 − 1 ex-
pressing them in terms of 𝑚 digits of the base 𝑋𝐵 . In our
study, we used a spreadsheet to automatically and easily
create the various datasets, data sources that were then

given to the Python interpreter. This heuristic approach
allow us to understand the limitations of the adopted
metrics and their strengths. To make the case more real-
istic we used a dataset with 5 categorising columns on a
domain based on 5 discrete values (0..4), so 𝑚 = 5 and
𝑋𝐵 = 5. The 𝑚 categorising columns in our simulation
are 𝐴, 𝐵, 𝐶 , 𝐷 and 𝐸 (Table 1).

Table 1
The complete dataset in the base 5-value domain

other instance columns A B C D E

... 0 0 0 0 0

... 0 0 0 0 1

... ... ... ... ... ...

... 0 0 0 0 4

... 0 0 0 1 0

... ... ... ... ... ...

... 4 4 4 4 3

... 4 4 4 4 4

With this assumption the distinct rows of the dataset
are 𝑋𝐵

𝑚 = 55 = 3,125. The methodology can be
replicated with any value of 𝑚 and 𝑋𝐵 . The method
remains valid also in the more general case in which
the 𝑚 columns belong to categories with different range.
In fact, in the latter case it will be sufficient to adopt a
variable base numbering system (𝑋𝐵𝑖). In the case study
we will consider the case of minimum completeness, since
maximum completeness can be easily extended by the
latter.

The matrix 𝑉 corresponds to the rows in Table 1:

𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 1
...

...
...

...
...

0 0 0 0 4
0 0 0 1 0
...

...
...

...
...

4 4 4 4 3
4 4 4 4 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

The idea is to start from the complete schema by in-
troducing, step by step, distortion effects to verify the
behaviour of the two metrics. The combinatorial metric
can be applied directly to the set of columns reduced
from the original dataset without any transformation
(Fig.5 2). Indeed, the advantage of this method is that
it acts directly on the values regardless of their nature
(datatype). The first index can be calculated using the
following instructions:

len ( d f . d r o p _ d u p l i c a t e s ( ) ) /
( len ( d f [ 'A ' ] . unique ( ) ∗
len ( d f [ 'B ' ] . unique ( ) ∗
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len ( d f [ 'C ' ] . unique ( ) ∗
len ( d f [ 'D ' ] . unique ( ) ∗
len ( d f [ 'E ' ] . unique ( ) )

An index closer to unity means a better (minimum) com-
pleteness of the data set, while more it tends towards
zero, greater is the incompleteness of the data An index
closer to unity means a better (minimum) completeness
of the data set, while more it tends towards zero, greater
is the incompleteness of the data. The second metric
requires the Python library numpy.linag to calculate the
eigenvalues of the Gramnian matrix. Once the eigenval-
ues have been calculated, the Gini-Simpson index can be
determined:

from numpy import l i n a l g as LA
d f =( d f . d r o p _ d u p l i c a t e s ( ) )
d f = d f . s u b t r a c t ( d f . mean ( ) )
G=np . dot ( d f . T , d f )
w, v = LA . e i g (G)

# Gini − S impson I n d e x
(w . s i z e / (w . s i z e − 1 ) ) ∗

( 1 − ( (w/w. sum ( ) ) ∗ ∗ 2 ) . sum ( ) )

3.2. Results
3.2.1. Case 1: no bias

With reference to Table 1, the presence of all possible
digits in the 5 positions guarantees that there is no com-
bination of the categories that is not represented, so the
data set contains exhaustively all the allowed combina-
tions [33]. It is interesting to verify that the value of the
two metrics does not change with respect to the position
of the rows and columns, so that a random shuffle of
them does not alter the final value of the two metrics.
This demonstrates the invariance of the two metrics with
respect to the position of the rows and columns. Indeed,
we cannot make any assumptions in advance about the
sorting (horizontal or vertical) of the data.

3.2.2. Case 2: introduction of bias

First, we are interested to know what will be the be-
haviour of the two metrics if a subinterval of values is
missing in the data set. This circumstance could lead
to discrimination in a category. We will consider three
different situations in which the rows of Table 1 are re-
duced:

1. deleting of a value in a column: e.g. all rows that
have the value zero in column 𝐴;

2. deleting a minimum portion of values in a column:
for example, the first 10 rows out of 625 that have
in column 𝐴 the value zero;

3. deleting a large portion of the values in a column:
e.g. the first 615 rows out of 625 that have in
column 𝐴 the value zero.

As we can see from the results obtained (Table 2) it
might be surprising that the combinatorial metric in case
1) returns the ideal value one: because the calculation is
based on the values present in the dataset thus the result
is that the domain is complete. The question is whether
the bias measure should take into account all possible
values of the categorising domains or not. If we want to
extend the data domain to the all the possible (but not
present) values we should increase the denominator of
the index formula and the expected value should be 0.80.
In cases 2) and 3) the combinatorial metric is consistent
with the level of bias in the data: low bias corresponds to
a value close to the ideal, while higher bias corresponds
to a greater deviation from the optimum. The metric
using the Gini-Simpson index applied to the eigenvalues
of the W matrix identifies case 2) as the best situation,
which represents an almost complete domain. While case
1) is correctly identified as the one with the highest bias
in the data.

Table 2
The value of the two metrics in the three cases of bias

combinatorial metric Gini on eigenvalues metric

1) 1.0000 0.9934
2) 0.9968 0.9999
3) 0.8032 0.9936

3.2.3. Case 3: linear dependence

Suppose that during the design phase of the analysis
(Fig. 2) a category that depends functionally on another
is wrongly inserted as columns into the new dataset. For
example, suppose that there is column 𝐵 which depends
on 𝐴 (𝐵 → 𝐴) according to the relation:

𝐵 = (𝐴+ 1)𝑚𝑜𝑑 5 (12)

In this case the combinatorial index will change from 1
to 0.2 because the contribution of a column is reduced
and the interval is reduced by one fifth (3,125/5 = 625)
too. The metric based on the Gini-Simpson index applied
to the eigenvalues is not affected by functional dependen-
cies since the eigenvalues are the same. Therefore, the
index is equal to unity. We observe the same behaviour of
the two metrics if the functional dependence is between
several columns, such as the case where 𝐷 depends on
the other columns (𝐷 → 𝐴,𝐵,𝐶,𝐸) according to the
relation:

𝐷 = (𝐴+𝐵 + 𝐶 + 𝐸)𝑚𝑜𝑑 5 (13)
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3.2.4. Case 4: different ordinal scales

This paragraph demonstrates the necessity of the map-
ping phase (Fig. 2) in order to use correctly frame theory.
In fact, since the method is based on the concept of Eu-
clidean distance, it requires integer, homogeneous and
comparable values. This is not directly applicable to real
datasets since it is not possible to make a priori assump-
tions about the data domain of the columns. Having
said that, we will study the behaviour of the two metrics
in three different random transformations of the initial
dataset (Table 1):

1. an uniform transformation 𝑇1 applied to all
columns that transforms discrete values into
other discrete values that are not necessarily adja-
cent and have a different Euclidean distance from
their initial positions:

𝑇1 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 → 44
1 → 11
2 → 5
3 → 111
4 → 9999

2. the same transformation 𝑇1 applied to a single
column;

3. a different transformation (𝑇𝐴, 𝑇𝐵 , 𝑇𝐶 , 𝑇𝐷 , 𝑇𝐸 )
per individual column (Table 3).

Table 3
The different transformations applied to columns

𝑇𝐴 𝑇𝐵 𝑇𝐶 𝑇𝐷 𝑇𝐸

0 10 90 77 11 1,500
1 20 9 55 8 2,000
2 30 99 66 9 500
3 40 900 44 15 2,500
4 50 999 88 14 1,000

The combinatorial metric is invariant with respect to the
distance of the values since it counts the distinct shapes
present in each column. So, in all the three cases the
dataset is complete and has no bias (value one). Con-
versely, the metric based on frame theory is sensitive
to distances so, except in the first case where the trans-
formation acts consistently and uniformly on all values,
in the others it detects a presumed bias (Table 4). This
demonstrates the need to reposition the values on an
equidistant ordinal scale in case the dataset does not
have this feature in the category data.

4. Conclusion
The problem of biased outputs of machine learning sys-
tems in domains that impact the rights and freedom of

Table 4
The value of the two metrics in the three transformation cases

combinatorial metric Gini on eigenvalues metric

1) 1.0000 0.9999
2) 1.0000 0.0028
3) 1.0000 0.4989

people pose important ethical and social challenges. It is
important to be able to anticipate the possible emergence
of discriminatory behaviour which, in certain situations,
could even violate fundamental human rights. For this
reason, we propose to integrate the common data cura-
tion pipeline in ML with a preliminary analysis of intrin-
sic properties of the dataset that could anticipate bias
problems downwards the chain. In this paper, building
on top of previous work in measures of disproportions in
datasets, we propose a measurement process composed
of two complementary metrics: combinatorial and Gini
on eigenvalues. We show a case study and report on
their strengths and limitations. These metrics open up
new scenarios for possible future developments in the
mitigation of bias since the learning phase.
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